Type I AI: Reactive machines

The most basic types of AI systems are purely reactive, and have the ability neither to form memories nor to use past experiences to inform current decisions. Deep Blue, IBM's chess-playing supercomputer, which beat international grandmaster Garry Kasparov in the late 1990s, is the perfect example of this type of machine.

Deep Blue can identify the pieces on a chess board and know how each moves. It can make predictions about what moves might be next for it and its opponent. And it can choose the most optimal moves from among the possibilities.

But it doesn't have any concept of the past, nor any memory of what has happened before. Apart from a rarely used chess-specific rule against repeating the same move three times, Deep Blue ignores everything before the present moment. All it does is look at the pieces on the chess board as it stands right now, and choose from possible next moves.

This type of intelligence involves the computer perceiving the world directly and acting on what it sees. It doesn't rely on an internal concept of the world. In a seminal paper, AI researcher Rodney Brooks argued that we should only build machines like this. His main reason was that people are not very good at programming accurate simulated worlds for computers to use, what is called in AI scholarship a "representation" of the world.

The current intelligent machines we marvel at either have no such concept of the world, or have a very limited and specialized one for its particular duties. The innovation in Deep Blue's design was not to broaden the range of possible movies the computer considered. Rather, the developers found a way to narrow its view, to stop pursuing some potential future moves, based on how it rated their outcome. Without this ability, Deep Blue would have needed to be an even more powerful computer to actually beat Kasparov.

Similarly, Google's AlphaGo, which has beaten top human Go experts, can't evaluate all potential future moves either. Its analysis method is more sophisticated than Deep Blue's, using a neural network to evaluate game developments.

These methods do improve the ability of AI systems to play specific games better, but they can't be easily changed or applied to other situations. These computerized imaginations have no concept of the wider world – meaning they can't function beyond the specific tasks they're assigned and are easily fooled.

They can't interactively participate in the world, the way we imagine AI systems one day might. Instead, these machines will behave exactly the same way every time they encounter the same situation. This can be very good for ensuring an AI system is trustworthy: You want your autonomous car to be a reliable driver. But it's bad if we want machines to truly engage with, and respond to, the world. These simplest AI systems won't ever be bored, or interested, or sad.